Live Sessions Week 6: Essential Skills 11 and 12: Forest Measurements, and Herpetofaunal Surveys and Identification

Importance of these skills

These skills very important:

- Tree heights
 - Universal measure in forestry
 - Technique applicable anytime we are measuring height above what we can reach
- Amphibians and reptiles
 - Can inform us of ecosystem health or quality
 - Some species a concern for human health

Essential Skill #11: Forest Measurements

Magic of Trigonometry

Tree height calculations – the triangle

Rise = Angle (%) ÷ 100 X Run

Assume: Angle (triangle 1) = 60%; Angle (triangle 2) = 15% Total angle = 75% Run = 10 mRise Rise = Angle ÷ 100 X Run 75% ÷ 100 X 10 m 7.5 m The tree is 7.5 m tall Run Angle

Looking downslope

Assume slope distance = 15.2 m and slope angle 15%
Horizontal distance = slope distance X slope correction factor
Slope correction factor for 15% = 0.9889
Horizontal distance = 15.2 m X 0.9889 = 15.0 m

Assume:

Angle (triangle 1) = 85%; Angle (triangle 2) = 25% Total angle = 110%

Looking downslope

Run = 15 m

Rise = Angle ÷ 100 X Run 110% ÷ 100 X 15 m 16.5 m

The tree is 16.5 m tall

Looking upslope

Assume slope distance = 22.7 m and slope angle 25% Horizontal distance = slope distance X slope correction factor Slope correction factor for 25% = 0.9701

Horizontal distance = 22.7 m X 0.9701 = 22.0 m

Tree height = Rise 1 – Rise 2

Assume:

Angle (triangle 1) = 105%; Angle (triangle 2) = 30%

Run = 22 m (from previous calculation)

Take Home Message

- On level ground we use our measured distance as the run – there is no need to correct slope to horizontal distance
- Shoot angles to top of tree and base of tree
- Calculate height

Take Home Message

When upslope of tree:

- 1. Have to correct slope distance to horizontal distance
- 2. Shoot angles to top of tree and base of tree
- 3. Calculate height

Take Home Message

When downslope of tree:

- 1. Have to correct slope distance to horizontal distance
- 2. Shoot angles to top of tree and base of tree
- 3. Calculate heights
 - Total rise from run to top of tree (Rise 1)
 - Rise from run to base of tree (Rise 2)
- 4. Subtract Rise 2 from Rise 1

Essential Skill #12: Herpetofaunal Surveys and Identification

Amphibians

Frogs

Toads

Caecilians

izards

Crocodiles

Reptiles

Turtles

Safety

Why we survey

Protection of species

Protection of environment

Public safety

Timber rattlesnake – potential human hazard

Louisiana pine snake – one of rarest snakes in US

Survey methods for amphibians

- 1. Visual surveys
- 2. Acoustic surveys
- 3. Egg mass searches
- 4. Trapping larval stages
- 5. Trapping adults

(1) Visual searches (frogs, toads, salamanders)

Salamander habitat – moist, wet, abundance of cover

(2) Acoustic surveys (frogs)

(3) Egg mass surveys

(4) Trapping larval amphibians

(5) Trapping adult amphibians

Drift fences and pitfall traps

Survey methods for reptiles

- 1. Visual surveys
- 2. Cover boards
- 3. Drift fence and funnel trap
- 4. Hibernacula

(1) Visual surveys

Basking collared lizard

Use binoculars

Visual survey – road survey

Visual survey – night surveys

Snapping turtle female digging a nest

Alligator eyes at night

(2) Cover boards

(3) Drift fence and funnel trap

(4) Hibernacula

Garter snakes emerging from hibernacula – southern Saskatchewan

Essential Skills 11 and 12: summary

This week we focused on:

- •A universal and critical skill to measure anything higher than we can reach.
- Importance of, and some ways to survey for, reptiles and amphibians.

